

ORIGINAL

DOCKET FILE COPY ORIGINAL

IMAY 1 D 1994 FEDERAL COMMUNICATIONS COMMISSION

OFFICE OF SECRETARY

RECEIVED

EX PARTE OR LATE FILED

May 10, 1994

Mr. William Caton Acting Secretary Federal Communications Commission 1919 M Street, N.W., Room 222 Washington, DC 20554

Reference: General Docket 90-314

Dear Mr. Caton:

On May 9 officials of Motorola and AT&T met jointly with Julius Knapp and Phil Inglis to discuss unlicensed PCS. Attached is a copy of written material used in this meeting.

Regards,

Jerry Leonard

Corporate Vice President

Attachment

cc: Julius Knapp Phil Inglis

No. of Copies rec'd____ List ABCDE

AGENDA

MAY 1 0 1994

FEDERAL COMMUNICATIONS COMMISSI OFFICE OF SECRETARY

- SUMMARY
- MULTIPLE SYSTEM SHARING ANALYSIS
- SINGLE SYSTEM ANALYSIS
- PROVIDING FAIR ACCESS TO SPECTRUM
- RECOMMENDATIONS

SUMMARY

WHY 1.25 MHZ CHANNELS?

- WINForum Sharing Principles for Isochronous Sub-band Require Many Narrow Channels for Spectrum Sharing
 - 1.25 MHz Provides Sufficient Number of Servers Per Channel and Suitable Number of Channels for Reuse
- Limiting Spectrum Occupancy of Each Cell is Necessary to Provide for Frequency Reuse Between Different Cells and/or Systems and to Promote Fair Access to the Spectrum within a Co-Located Geographic Area.
 - Propagation Modeling Shows that the Size of a Co-Located Geographic Area is Substantial.

SUMMARY

WHY NOT 5 MHZ CHANNELS?

- Spectrum Efficiency of Wide Bandwidth Systems are Lower than Narrower Bandwidth Systems in a Co-Located <u>Multiple System</u> Environment
 - Analysis Example: 1.25 MHz Channels Improve User Density in a Co-Located Geographic Area by 300% to 650% Compared to 5 MHz Channels
- Spectrum Efficiency of a Wide Bandwidth (5 MHZ) Spread Spectrum System is Lower than a Narrower Bandwidth(1.25 MHZ) Non-Spread Spectrum System in an In-Building <u>Single System</u> Environment
 - Analysis Example: Narrower Bandwidth System Provides 470% Higher User Density than Spread Spectrum System
- 5 MHz Channelization Restricts Fair Access To Spectrum
 - Example: 5 MHz Channelization Permits Two Wide Bandwidth Cordless Telephones to Monopolize 10 MHz of Spectrum

MULTIPLE SYSTEM SHARING ANALYSIS MODEL

Spectrum Efficiency of a System in a Co-Located Multiple System Environment

MOTOROLA

Personal Communications Systems Group

MULTIPLE SYSTEM SHARING ANALYSIS MODEL

- Lower 10 MHz Sub-Band Analyzed (1890-1900 MHz)
- Multiple Systems are within a Co-Located Geographic Area
- Systems Analyzed:

	Channelization		
	1.25 MHz	5 MHz	
Single User, Single Cell Low Capacity System	1.25 MHz BW CDMA Cordless Telephone	5 MHz BW CDMA Cordless Telephone	
Multi-User, Single Cell High Capacity System	1.25 MHz BW WCPE System	5 MHz BW SS TDMA System	

MULTIPLE SYSTEM SHARING ANALYSIS MODEL

Audio Coding: 32 kBPS ADPCM

System Sitings: Co-Located

Antenna Gain: 0 dBi

Power Control: None

• Traffic / User: 0.2 Erlangs

• Blocking: ≤ 0.5 %

MULTIPLE SYSTEM SHARING ANALYSIS

Duplex Voice Channels / MHz

System	Duplex		
	Channels / MHz		

Low Capacity Systems	1.25 MHz BW CDMA Cordless Telephone	0.8
Cystoms	5 MHz BW CDMA Cordless Telephone	0.2
High Capacity	1.25 MHz BW WCPE System	9.6
Systems	5 MHz BW SS TDMA System	1.6

SHARING ANALYSIS - Low Capacity Systems

Single User, Single Cell System Spectrum Efficiency Within Co-Located Geographic Area

Analysis Example: 1.25 MHz Channels Improve User Density in a Co-Located Geographic Area by 300% Compared to 5 MHz Channels

SHARING ANALYSIS - High Capacity Systems

Multi-User, Single Cell System Spectrum Efficiency Within Co-Located Geographic Area

Traffic Model: Lost Calls Held; Finite Sources

1.25 MHz BW	5 MHz BW		
WCPE System	SS TDMA System		

BW	1.25	5
Channels	12	8
Users	28	15
Users / MHz	22.4	3.0

SHARING ANALYSIS - High Capacity Systems

Analysis Example: 1.25 MHz Channels Improve User Density in a Co-Located Geographic Area by 650% Compared to 5 MHz Channels

SINGLE SYSTEM ANALYSIS

Spectrum Efficiency of a System in an In-Building Single System Environment

CHANNEL EFFICIENCY OF VARIOUS SYSTEMS

PARAMETER	CT2	DECT	PHP	WCPE Class I	WCPE Class II	WIDE BAND SS TDMA
RF Channel Spacing (kHz)	100	1728	300	1250	625	5000
Duplex (User) Channels / RF Channel	1	12	4	12	6	8
Duplex (User) Channels / MHz	10	6.9	13.3	9.6	9.6	1.6

Note: Duplex (user) channels utilize 32 kbit ADPCM coding for audio signals

SINGLE SYSTEM CAPACITY ANALYSIS MODEL

- Systems operate independently of each other
- Lower 10MHz sub-band is analyzed (1890-1900MHz).
- · Capacity is for an in-building single floor hexagonal cell pattern.
- All audio signals use 32 kbit ADPCM.
- RF shadowing variations are excluded for simplicity.
- In-building propagation measurements at 900 MHz are scaled to 1.9 GHz.
- Power control is implemented so that interference levels do not exceed LBT thresholds.
- All systems utilize dynamic channel allocation.

SINGLE SYSTEM TRAFFIC CAPACITY ANALYSIS

	ANALYSIS EXAMPLE		
PARAMETER	WCPE Class I	WIDE BAND SS TDMA	
RF Channel Spacing (kHz)	1250	5000	
Duplex (User) Chan. / RF Chan.	12	8	
Duplex (User)Channels / 10MHz	96	16	
Total Erlangs / Cluster (0.5% GOS, Erlang B)	77.2	8.1	
Indoor Reuse Factor (1)	6.1	3.7	
(20m Cell) Erlangs / Cell	12.6	2.2	
Total Users / Cell (0.2E/User)	63	11	

Note 1: Reuse factor will increase by a factor ranging from 2 to 4 for a multiple floor environment.

 The Additional Bandwidth Used By a Spread Spectrum System Does Not Reduce the In-Building Reuse Factor Sufficiently to Achieve the Equivalent Number of Users Per Cell as a Non-Spread Spectrum System

Analysis Example: 1.25 MHz Channels Improve User Density in a Co-Located Geographic Area by 470% Compared to 5 MHz Channels

SHARING ANALYSIS - Providing Fair Access to Spectrum

1.25 MHz Channels

CDMA Cordless Telephone #1 CDMA Cordless Telephone #2 7.5 MHz 10 MHz

5 MHz Channels

- 7.5 MHz of Spectrum Available for Other Co-Located Systems
- No Spectrum Available for Other Co-Located Systems
 - Other Systems Blocked and Denied Access to Spectrum

1.25 MHz Channelization Promotes Fair Access To Spectrum and Prevents Monopolization of a Large Amount of Spectrum by a Single Device in a Co-Located Geographic Area

RECOMMENDATIONS

- Maintain the 1.25 MHz Channels in the 1920 to 1930 MHz Sub-band.
- Change the Channelization of the 1890 to 1900 MHz Subband from 5 MHz Channels to the Originally Proposed
 1.25 MHz Channels.

Justifications:

- (1) WINForum Sharing Principles for Isochronous Sub-band Require Many Narrow Channels for Spectrum Sharing
 - 1.25 MHz Bandwidth Channels Provide Sufficient Number of Servers per Channel and a Suitable Number of Channels for Reuse.

RECOMMENDATIONS

Justifications (cont.):

- (2) Limiting Spectrum Occupancy of Each Cell is Necessary to Provide for Frequency Reuse Between Different Cells and/or Systems and to Promote Fair Access to the Spectrum within a Co-located Geographic Area
 - Propagation Modeling Shows that the Size of a Co-Located Geographic Area is Substantial.
- (3) 5 MHz Channelization Restricts Fair Access to Spectrum
 - Example: Allows Two Wide Bandwidth Cordless Telephones to Monopolize 10 MHz of Spectrum
- (4) Spectrum Efficiency of Wide Bandwidth Systems is Significantly Lower than Narrower Bandwidth Systems in a Co-Located Multiple System Environment.
 - Analysis Example: 1.25 MHz Channels Improve User Density in a Co-Located Geographic Area by 300% to 650% Compared to 5 MHz Channels

RECOMMENDATIONS

Justifications (cont.):

- (5) Spectrum Efficiency of a Wide Bandwidth (5 MHz) Spread Spectrum System is Significantly Lower than a Narrower Non-Spread Spectrum System in an In-Building Single System Environment.
 - Analysis Example: Narrower Bandwidth System Provides 470% Higher User Density than Spread Spectrum System
 - Wide Bandwidth Spread Spectrum System Enabled by
 5 MHz Channels Results in Lower User Density and Lower Utility for the Spectrum.

ADDITIONAL CONSIDERATIONS

- 1.25 MHz Channels Can Deliver Bit Rates Comparable to Wide Bandwidth Spread Spectrum Systems. These Bit Rates are Sufficient to Support a Wide Range of User Applications.
- The Lower Number of Users Supported by 5 MHz
 Channelization Negatively Impacts the Ability to Clear
 the Sub-Band.
- 5 MHz Channelization Adversely Affects the Quality of Service that Can Be Provided within a Co-Located Multiple System Environment Due to the Potentially High Probability of Blocking.

